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N O N S T A T I O N A R Y  N O N I S E N T R O P I C  

SPATIAL DOUBLE WAVE F L o w s  

S. V. Meleshko UDC 517.944 + 519.46 

Nonisentropic nonstat ionary spatial double waves have been studied in [1-5], where some partial 
solutions of double wave equations were derived. 

This paper classifies nonisentropic spatial double waves with an arbitrary equation of state r = r (p, S) 
in the presence of functional arbitrariness in the general solution of Cauchy's problem, which cannot be reduced 
to invariant solutions. 

Consideration is given to nonstationary, nonisobaric, nonisentropic double waves which are irreducible 
to invariant solutions for the equations of motion of an ideal gas in the spatial case: 

d V  dr dS 
d"-~-+ r V p  = 0, d--~- - T d i v V  = 0, d-T = 0. (1) 

The equation of state r = 7" (p, S) is assumed to display the characteristics 7"p ~ 0 and rs  ~ 0. In this case V = 
(ul, u2, u3) is the velocity; p is the pressure; S is the entropy; 7- is the specific volume; d/dt  = O/Ot+uc,~/~zo, 
(summation over the recurring Greek index is performed from 1 to 3, unless otherwise stipulated). 

If p and S are functionally dependent on the solution of system (1), then p = p (S), 7- = 7- (S), and 
system (1) can be written in the form 

dV d~ 
'dr' + V q ~  - ~ - = 0 ,  d i v V = 0 ,  (2) 

where ~ = ~ (S) are found from qo' (S) = 7" (S) p' (S) # 0. 
As double wave parameters we choose qo and some function A which is functionally independent of the 

wave. From the first two equations of system (2) we obtain 

~z~Ouj/OA - qo~jOui/OA = 0 (i, j = 1, 2, 3, i # j ) .  (3) 

Continuing (3) D / D t  ( D / D t  = Dt + uaDa) and substituting the derivatives Dqoxi/Dt = 
-~oz~, ((Ouo,/OA)(OA/Oxi) + (Ou~/Oqo)(Oqo/Oxi)), ~p~, = -(Oui/OA)(dA/dt)  we have 

ou, oh oh o u, 
Oh Oz i O)~ Ox----~ + - ~ \ O ) ~  2 0)~ O)~ 2 Oh]  = 0  ( i , j = 1 , 2 , 3 ,  i # j ) .  (4) 

As follows from the prohibition of reduction to invariant solutions [6], the rank of the matrix composed of 
the coefficients for the derivatives d)~/dt, OA/Oxi (i, j = 1, 2, 3, i ~ j )  in Eqs. (4) and the fifth equation 
of system (2) must  be less than or equal to 2. Hence we arrive at the equation Oui/O)~ = 0 (i = 1, 2, 3) 
which contradicts the nonisentropicity of the flow. Thus, flows should be considered for which p and S are 
functionally independent.  

We choose pressure and entropy as double wave parameters, i.e., assume that  ui = ui (p, S) (i = i, 2, 3). 
Introducing the new dependent  variable qo = (div V)/7"v, we reduce system (1) to the form (H = 7"p + u,~vu~v): 

dS 
dp 7"~ = 0, S o -  - 0 ,  R] = u ~ , s S ~ - H q o = 0 ,  ~i = p~i + uiv~o = O ( i = 1 , 2 , 3 ) .  (5) 
dt dt 
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Differentiating Di completely with respect to the spatial variable xi and deriving the combinations 
below, from Eqs. (5), we obtain 

D i ~ j  - D j ~ i  = ujp~o, i - uip~oxj -~ ( u j p s S x  i - U i p S S x i )  - ~2  (UjppUip _ u ippUjp)  --- 0; (6) 

R2 = D ( H ~ - u a s S , , ~ )  = . H d ~  �9 Dt  dt - ~o (7-u~,ps + u~,pu#pu#s) S . ,  + ~o 2 (H 2 + 7-Hp) = 0; (7) 

D ( V ~ ) / D t  = u ~ # ~ , / d t  + 7-~.~ + ~r  - ~2 (~ .pH - 7-~pp) = 0 (i,  j = 1, 2, 3, i # j ) ,  (8) 

where r = 78 + u~,~uas; ~ = 7-8 + 2uq~uas; D / D t  = Dt + uaDo,. 
Eliminating the derivatives qa.~ and qo.~ from (6) and using Eqs. (8), we get 

( ~ u i p  - -  7-ltipS) S x j  --  ( r  - -  "rt t jpS) S x  i = 0 ( i ,  j = 1, 2, 3, i ~ j ) .  (9) 

Further, as in the case of stationary and plane flows, it is necessary to distinguish between two cases: 
H ~ 0  and H = O .  

(1) Let H ~ 0. Expressing T in terms of the third equation of system (5) and substi tuting it into 
the other equations of the system, together with (9) we derive a homogeneous system of seven quasilinear 
differential equations with respect to p and S. From the prohibition of double wave reduction to invariant 
solutions [6] it follows that  

7-uips - Cuip = 0 

(i = 1, 2, 3), then 

p = h (t) ,  ~ = h'/7-, 

If uip = 0 

(i = 1, 2, 3). (10) 

St + ua (S) S.= = 0, (11) 

where u / (S )  are arbitrary functions; h (t) is a function satisfying the equation 

h" = _ ( ~ , ) 2  a l n  (17-pl)/Op. (12) 

Since p and S are functionally independent,  the last equality gives 02 In (]~'p[)/OpOS = 0 and hence, 

7- = A I ( S ) g ( p )  + A2(S) (13) 

[AI(S), A2(S), and g(p) are arbitrary functions]. Substituting the latter expression for 7- into (12) and 
integrating it with respect to the variable t, we obtain g (h (t)) - clt  + c2 (Cl and c2 are arbitrary constants, 
cl ~ 0). Without  loss of generality it is assumed that  c2 = 0. 

Thus, for an equation of state of type (13), double waves exist in which ui (S) are arbitrary functions of 
entropy; the pressure p is determined from the equation g(p) = clt, and the entropy S satisfies the following 
system of two differential equations in partial derivatives: 

dS /d t  = O, t u~S,~ = c l A 1 / ( c l t  A1 + A2). (14) 

System (14) is in involution and contains one arbitrary function of two arguments. For instance, for A2 = 0 
its solution is 

t~l  (S)  - x l  + r ( t ~  (S)  - x2, t ,3  (S)  - x3) = 0 

[r (~, () is an arbitrary function]. 
We now consider the case where uapu~p ~ 0 (for definiteness it is assumed that  ulp ~ 0). From (10), 

the existence of the functions Fi = Fi (p) (i = 0, 2, 3) follows. Hence, 

= F o ~ p  - ~ . ~ . p ,  ~ p  = F~ip (i = 2, 3). (15) 

Excluding the derivatives dw/d t  from Eqs. (s) and using Eq. (7) we get 

ko i=rH~, . i+qo(H(S .~  + u ip~u .pS . . ) -qo2c i=O,  c i = 2 u i p H 2 + r H p u i p -  7-Huipp (i -- 1, 2, 3). (16) 

From the combination 

7- ~ ~ u .p  D . R 1  - u . s  (DtI l~ /Dt  - 7-D~R2) + ~ (~ u . p u ~ s  + ( H ) u ~ p D z S o  = 0 
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we find the first-order equation for the dependent  variables: 

R3 = H (UapSx,) [r~ (uzssSx~)  + ~P (2H~uapuas - 2~7"uappuas - Hr~s)] + ~o2b = O. (17) 

The form of the function b = b (p, S) is rather tedious and will not be used in further discussions. 
With uapSx~ = 0 a double wave exists only for ui = ui (S) (i = 2, 3). Indeed, differentiating the 

last equation along the particle trajectory and allowing for conservation of entropy in the particle, we obtain 
D (uapSx~) /Dt  = rTuappSx~ = 0. Thus, the prohibition of reduction to the invariant solution makes it 
necessary to fulfill the following: 

Ulpp U2pp U3pp 

In this case, F~ = F~ = 0 and, rotating the axis of coordinates, one get u~ = ui (S) (i = 2, 3). In this case, 
the equation uarS=~, = 0 gives Sxl = 0 and from the relation D]R] = 0 we obtain ~xl = Hpulp~2/H.  
Substituting the latter into (16) (i = 1), we get 2u]pH - rulpr = O. Hence, from 7" = ulp (Fo - ul)  and (15), 
it follows that  

2ulpFg + ulpp (Fo - Ul) = 0. 

In this case the system of equations (5), (7), and (16) along with uapSx.  = 0 are in involution and contain 
one arbitrary function of one argument. 

We consider the case where uo, pSx .  ~ O. Assume that  ~ ~ 0. Let us demonstrate that  in this case 
the system of equations (5) has no solutions with functional arbitrariness in the general solution of Cauchy's 
problem. 

If 

Ulp U2p U3p [[ = 1, 
r = rang 

ulS u2s u3s II 
either reduction to the invariant solution or contradiction with the condition H ~ 0 occurs. Thus, it is assumed 
that  r = 2. 

We introduce now the new dependent  variable A = uapSx~ [in terms of compatibili ty theory, the space 
of dependent variables is partially extended, i.e., we consider the extended space not in its entirety but only 
its subspace]. 

Since ( ~ 0, it follows from the equations 

R3+i = - r D i R 2  + Dff l i /Dt  - ~,~ uip u.~ Da So - ~ H D i S o  = 0 

that  

L i = A = i - a i . ( p , S )  S x . - c ( p , S , A , ~ p ) = O  ( i = 1 , 2 , 3 )  

with the functions aij = aij (p, S), c = c (p, S, A, ~) (i, j = 1, 2, 3). In addition, 

Lo = ~D (A - u~pS=~) = d)~dt rcpu~ppS=~ + vp~pA = O. 

For the dependent  variables p, S, ~, and A the overdetermined system of differential equations is deduced in 
which the parametric derivative is either S~ 2 or Sr 3. 

We determine the coefficients of the second derivatives in the following extensions of the equations 
(i = 1, 2, 3): 

DiR1 = u~sS=~x~ + . . . .  O, DiR3 = v A H ~ u~ssS=c,r~ + . . . .  O, 

DLi 
D---'~ - DiLo + ai,~D~,So = rTu,~ppS~,~,~ i + . . . .  O, Di (A - u~,pS=,~) = u,~pS~:,~= i + . . . .  O. 

In this case only terms containing the second derivatives are written. 
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Since H A~,~ ~ 0, and the parameteric derivatives can be represented as S,i,1 (i, j = i, 2, 3) only, 
the solution having functional arbitrariness requires that in this system the matrix rank be notequal to the 
number of these derivatives. Hence, 

ro = rang 

If 

Ulp 

~IS 
UlSS 
~lpp 

U2p Uap 

u2s uas ~ 2. 
u2SS uaSS 
U2pp u3pp 

II uip u2p.  II UlS u2S u3S = O, 
ulpp u2pp uapp 

after integration over S, it acquires the form 

(F~Fa - F~F2)ul + F~u2 - F~u3 = g(p) (18) 

with the arbitrary function g (p). Differentiating the last equation with respect to p we get 

(F 'F3 - F 'F2)ul + - = g' (p).  (19) 

From (18) and (19), we obtain the relations 

= (20) 

When F~F~ ~ - F~F~ ~ ~ O, from Eq. (20) we find ui = ui(p) (i = 1, 2, 3), which in view of the equation 
R1 = 0 contradicts the condition H~  ~ 0. Hence, F~F~ ~ - F~F~ ~ = 0. Without loss of generality, it is assumed 
that Fa = 0. In this case either F~ = 0 or u3s = O. In both cases, considering the relation r0 = 0 leads to 
reduction (plane flows). 

Thus, we further study the case with ~ = 0. From (10) and ~ = 0, it follows that r = fou2p with 
f0 = f0 (p). From the combinations 

D,~ff2j - Dxj ff2i = O ( i = 1 , 2 , 3 ,  i e j ) ,  

we deduce the first-order equations 

Szia j - . . q z j a i  = - ~ ( u i p d j - u j p d i )  ( i , j  = 1,2,  3~ i ~ j ) ,  

al = rUulp  [( Hv /  H ) s  - 2 (ulpp/Ulp)S + 2 ( H / r ) s ] ,  (21) 

~ = Fiat, di = F~& + F[ (~p ( 2 H  2 + ~Hp) - 2rHu~pp)  - ~ H ~ p F ~ '  (i = 2, 3). 

As follows from (21) and R1 = 0, the relations ai (u~sa , )  = 0 (i = 1, 2, 3) must be satisfied for the 
solution to have functional arbitrariness. Since rs ~ O, it follows that al = 0 and from (21) it follows that 
di = Fidl (i = 2, 3). Hence, 

( Hpl H ) s  - 2 (ulpp/ulp)s + 2 ( H I r  )s = 0; (22) 

F[ (ulp (2H 2 + r g p )  - 2rgulpp)  - "rgu~F~' = 0 (i = 2, 3). (23) 

From the equations 

DkOi/Dt - rDiR2 + qoH u~p u~sDi So = 0 (i = 1, 2, 3) 

on the strength of (22), the following relation follows: 

2r2Hulppp - 2rUlpp (2H ~ + Trip) + u~pH (4H 2 - rH~ + rr~v ) = 0. (24) 

Equations (22)-(24) and 

= rs + 2 u~p u~s = 0 (25) 
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are sufficient for the involutivity of the overdetermined system of equations (5), (7), and (16) with two arbitrary 
functions of one argument.  The study of the compatibility of the system of equations (22)-(25) involves two 
stages: Ft. = F~ = 0 and (F~) 2 + (F~) 2 # 0. 

(A) Let (F~) 2 + (F~) 2 # 0. Since vHulp ~ O, from (23) it follows that  (F~F~' - F~F~') = 0. Without  
loss of generality, F~ # 0, F3 = 0, and u3 = u3 (S) are assumed to be arbitrary functions. Hence, Eq. (22) is 
identically fulfilled in view of (23) (i = 2). 

From Eqs. (15) and (25), and r = fou2p we obtain the first derivatives 

u2s = - ( fo  ulps + uls)/F2, u2p = F2 ulp. (26) 

Equating the mixed derivatives and integrating over S we determine 

ulp,= - (u lp (F2 f~ -  foF~ +/72(1 + F~)) -u lF~ + F4)/(foF2), 

where F4 = F4 (p) is an arbitrary function. Since the calculations are too cumbersome, we just indicate the 
way to further s tudy this problem. Differentiating ulpp with respect to p, we find ulppp. Substi tuting the 
derivatives ulpp and ulppp into (23) and (24), we get F4 = cFr (c = coast), and for ul = ul (p, S), we derive 
the equation 

aulp  + (u l  - c) = 0 

with the function a = a (p). Without loss of generality, it is assumed that  c = 0. From the last equation 
we find ul = hi (p) A (S). Then, from (26) we obtain u2 = h2 (p) A (S) and from the condition ~" = fou~p it 
follows that  the equation of state can be represented in the form v = g (p) A2(S). In this case, A = A (S) is an 
arbitrary function and for the function g = g (p) and hi = hi (p) (i = 1, 2) two ordinary differential equations 
hold: 

F2F," )2 2 ((h~ (1 + F 2) + g') = 2 (F~)2h~ (g'hl - hlg ) 

+F2F~gg" + 2 ((F~)2g + (h~)2F2F~(1 + F2)) ( (h l )  2 (1 + F 2) + g'); (27) 

F2gh~' = F2 (1 + F 2) (hl) 3 - F~hl (hl) 2 + h i (F2g ' -  gF~) (28) 

(F2 = h~/h~). Here, as r + u~u~p = 0, the pressure is also independent of t ime t. The function u3 = u3 (S) 
remains arbitrary. 

R e m a r k  1. In [1-3], for a polytropic gas with the function u3 = cA(S) (c = c o n s t ) ,  another 
representation of the solution deduced here is given. Thus, if the solution is sought for in the form 
u~ = r (p) A 2 (S), for the functions F2 (p) and r (p) there is a system of two ordinary differential equations 

g (2r162 - (r162 = g' + (1 + F22) ( r162 - (g + r  F~/F2; (29) 

g (g' + (1 + F22) (r162 = (1 + F2)2(r162 

+ (g' (1 + + + r  F /Fs + g (g" + 2g' F /Fs). (30) 
R e m a r k  2._In stationary spatial double waves, the equation r+u~uap = 0 provides identical fulfillment 

of Eq. (24) by virtue of (23) with (F~) 2 + (F~) 2 ~ 0. 
(B) Let F~ = F~ = 0. Without loss of generality, it is assumed that  F2 = F3 = 0, which corresponds 

to us = us (S), u3 = ua (S). Then, from the condition ~ = 0, we obtain Ul = hi (p) A (S) + r (p), and from 
r = fou2p it follows that  f0 = -hl/h~.  Analyzing Eqs. (22) and (24) (without loss of generality) we arrive at 

ul = hi (p) m (S), r = g (p) A2(S), (31) 

where g = -hlh~. In this case, the functions u2 (S) and u3 (S) remain arbitrary. 
In [1-3] these functions are related to A (S) due to the additional requirement upon the double wave 

shape. 
(2) Let H = 0. Since p and S are functionally independent,  from the prohibition of reduction to the 
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invariant solutions of systems (5), (7), and 

rang 

(9) it follows that  

t t lS  u2S uaS 

b2 - b l  0 
"b~ 0 - b l  

b3 0 - b l  

<~ 2, 

where bi -= ruips  - (uip; ai = bi - ~uip (i -- 1, 2, 3). Therefore, with baba 7 ~ 0 the following relations must be 
satisfied: 

bo, ao, = O, uasba = 0. (32) 

We further pass to the new independent variables p, S, x3, and t (without loss of generality the 
relationship p ~ S z 2  - px2S~l 7 ~ 0 is assumed to be fulfilled), i.e., Xl = P ( p ,  S, x3, t), z2 = Q(p ,  S, x3, t). 

Thus, Eqs. (1) can be written as 

BPp - AQp = O, - u l p B P s  + (r  + ulpA) Qs  = O, (r  + u2pB) Ps  - u2pAQs = O, 

(~3FB - . Q . ~ )  P s  - (~3pA - ~P .~ )  Q s  = o, 
(33) 

(u2s - uasQ~3) Pp - (u l s  - uasP~a) Qp = o, 

A = tt 1 - u3P,3 - Pt, B = u2 - u3Q,a - Qi. 

PpQs - PsQv r O. (34) 

The study of system (33) consists of two cases: 
(a) there are values of i and j (i # j )  such that UipSUjp -- UjpSUip ~ 0, 
(b) ~ ipswp - Wpsuip = 0 (i, j = 1, 2, 3, i # j ) .  
We now consider case (a). For definiteness it is assumed that  A3 = u2psu lp -u lpsu2p  # O. We introduce 

Hence, 

m 2 = ttlpSU3p - -  tt3pSUlp. 

X U2p ~/A3; (35) J XS U2pS 

u]psulP 11)/A3; (36) 

- P,)  Qv = 0 (37)  

the notations 

A 1 = U3pSU2p - -  U2pSIt3p, 

Then system (33) reduces to the system 

I_ r  u]vs Xs  

(~2 - " 3 Q , z  - Q*) Pp - (~1 - ~3P ,3  

[r = .  + ~ , ,  x =  x (p, s ) ] .  
Substi tut ing (35) and (36) into (37) we get a relationship which is linear in x3 and t. Splitting it 

with respect to x3 and t, we obtain the following equations: for a free term, a linear second-order hyperbolic 
equation in function X = X (P, S )  of the type 

rXpS - (Xp -[- qlXS -4- q2x = 0 (38) 

where the functions ql = q l ( P ,  S) and q2 = q 2 ( p , S )  are expressed in terms o f t  and ui(p ,  S) (i = i, 2, 3), 
and for x3 and t, 

Aab~p = O, (u~pba) A3 + blb2p - b2blp = 0. (39) 

Thus,  at H = 0 the flows in the case (a) will have linear levels and the functions r (p, S) and ui (p, S)  
(i = i, 2, 3) satisfy the overdetermined system consisting of five differential equations: (32), (39), and H = 0. 
It is rather difficult to analyze this system in the general case. However, assuming ~b = 0, the flows become 

195 



-stationary. For stationary gaseous flows with the equation of state of the form r = g (p) A2(S), this system is 
consistent only in a partricular case of the equation of state for a polytropic gas with polytropic index 7 = 2 
and contains one arbitrary function of one argument. 

For case (b) without loss of generality it is assumed that u ~  # 0. Hence, 

ui~ = Fiux~ (i = 2, 3), (40) 

where Fi = Fi (p) (i = 2, 3). In this case, the solution of system (33) by virtue of (34) reduces to the 
integration of a system of two linear equations with respect to one unknown function Q (p, S, x3, t): 

~Qp + ~ (~Q.~  + Qt - ~ )  = o; ~sQ~ + ~ (~sQ,~  - ~ s )  = o. (41) 

In this case, 

P = - F 2 Q  - z.aF3 + tF4 + Fo, (42) 

Fo = F0 (p), F4 = F4 (p) are arbitrary functions. Note that Eq. (42) gives 

xl + x2F2 + x3F3 + tF4 = F0, 

and substituting (42) into the reversibility condition (34) we obtain f lQs ~ O. In addition, since r = -wu~p, 
we have w ~ 0 and ~ = -w2(Ulp/W)s . Excluding Qp from (41) by virtue of fl ~ 0, we arrive at 

(u3/w)sQ=3 + ( l lw)sQt  = (u2/w)S. (43) 

We demonstrate now that ws ~ O. Indeed, let ws = 0; then u3s ~ O, and with uas = 0 from (43) we 
find uss = O, and hence uls  = O, which contradicts the condition "s ~ O. Since u3s ~ O, relationship (43) is 
integrated over x3: 

Q = x3 (u2s/uas) + a ( t ,  p, S). 

Substituting this relation into the first equation of (41) and splitting it with respect to z3, we get 

w (u2s/uaS)p - (F~ (u2s/u3s) + F]) (u3 (u2s/u3s) + G, - us) = 0; (44) 

wG,  + (F~ - F~G + tFl) (u3 (uss/u3s)  + a t  - us) = o. (45) 

if F~u2s + F~uas = 0, from Eq. (44) we find that (uss/uas)p = 0, which also leads to the contradictory 
equality rs  = 0. 

Differentiating the relation r + WUlp = 0 with respect to p using the condition H -- 0, we deduce 

F~u2 + F~u3 - F 1 = - w ( u x , p / u l , ) .  (46) 

Since ws = 0, we have, 

F~ss + F;,3s = - ~  (ulppl~lp)s. 

On the other hand,-ws = UlS + u2sF2 + u3sF3 = 0. Differentiating the latter with respect to p and using (40), 
we have P~uss + P ~ 3 s  = -u lps  (1 + F~ + F~). However, in this case ( '~p/" ips) ,  = 0. S ince ,  = - ~ u , ~ ,  it 
follows that 

~lp = 1/(~g + ~), (47) 

where g = g (S); ~ = A (p). In this case, r = - w / ( w g  + ~) and hence g'A ~ O, and if g'A = 0, then TST p = O. 
Substituting r and u]p into H = 0 we obtain I + F 2 + F  2 = A 2 (w/A)p. Thus, (w/A)p # 0. As (F~)S + (F~) s # 0, 
let, e.g., F~ r 0. From (46) it follows that 

ua = (-F~u2 + F~ -w(u lpp lu ,p ) ) /F~ .  (48) 

Differentiating (48) with respect to p and using (40), we get 

u2 (F~/F~)' = - u l p  (F2F~ + F3F~)/F~ + [F~ - w (u~pp/u,p)/F~]p. (49) 
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When (F~/F~)' = 0, it is assumed that  F2 = 0. Substituting (47) into (48) we obtain a quadratic polynomial 
with respect to g (S). As gl r 0, the coefficients for g must go to zero. Hence, (w/,k)p = 0 and this contradicts 
the above assumption. Thus (F~./F~)' 7 ~ 0; then from (49) we determine us and calculations similar to those 
for (F~/F~)' = 0 lead to the same contradiction. Hence, ws ~ 0. 

Integrating (44) over (46) we have the relation 

Q = t (u2/,.)________~s + a (p ,S , : , )  (~ = ~3 - t (us/,o)S ~ 
(ll~o)S (II~)s  ]' 

Substituting it into (45) and decomposing it with respect to t, we get 

ks - k 3 a ~  = O; (50) 

Gp - G), (Fg - F~G- Fl)~)u3s/ws = (Fg - F ~ G -  F~ , \ )u s s /ws ,  (51) 

where ki = FiTs  (u~p/r )s  + uis  (ln (r /u2p))s  (i = 2, 3). 
We assume that  k3 = 0, then k2 = 0. Hence, 

F 2 w s ( u 2 p / v ) s T u 2 s ( l n ( r / u 2 , ) ) s = O ,  F 3 w s ( u ~ p / r ) s + u a s ( l n ( r / u 2 , ) ) s = O .  (52) 

Further, it is necessary to consider two cases: 
1. Let F2u3s - F3u2s 7 ~ O. Then from (52) we find that  ( u ~ , / r ) s  = 0, i.e., r = ~o (p)Ul 2, and from 

H = 0 it follows that  

r = g ( p )  A2(S) ,  u i = A ( S ) ( h i ( p ) + g i ( S ) )  ( i = 1 , 2 , 3 ) .  

Further analysis leads (without loss of generality) to the functions g (p) and hi (p) (i = 1, 2, 3) satisfying the 
equations 

i i h~h~ = O, gl + h~h~ = O, g +  

and the velocity coordinates are represented either as 

ui = A (S )h i  (p) (i = 1, 2, 3) 

or as 

u i = A ( S )  hi(p) ( i = 1 , 2 ) ,  u 3 = u 3 ( S ) ,  

(53) 

where u3 (S) is an arbitrary function; h~2h3 - h~3h2 7 ~ O. 
2. Let F2u3s - F3u2s = O. In this case, a double wave exists only if Eq. (53) holds and 

ua = A ( S )  hl(p) ,  u i = u i ( S )  ( i = 2 , 3 )  

where u3(S) and u2(S) are arbitrary functions. 
Assume now that  k3 ~ 0. Integrating (50), we have G = ,k(k2/k3) + ~(p, S).  Substituting the latter 

into (51) and decomposing it with respect to A we obtain 

/r -- ]~2 ]C3p + (/g2F~ -t- k 3 F 3 ) ( F 2 u 3 s  - F 3 u 2 s )  ( U l p / T ) s  = 0; (54) 

~s  ~ s  G = 0. (55) 

Differentiating the relation r + WUlp = 0 with respect to p and using the condition H = 0, we get 

u2F2 + u3F3 = F4 - ul - T/Ulp, u2F2 -I- u3F3 --~ F~ -Ic TUlpp/U~p.  (56) 

In this case, for F2F~ - F~Fa = 0, without loss of generality, it is assumed that  F2 = / ' 3  = 0, i.e., u2 (S) 
and u3 (S) are arbitrary functions, and Ul (p, S) and r (p, S) is determined from the equations 

7" = ( r  4 -- Ul) Ulp , t t lpp(F4 -- Ul) -I- F l u l  p -- 0. 
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With F2F~ - F~F3 ~ O, Eqs. (56) gives 

u2 = [ ~ ( F 4  - u, - f l u , p ) -  F3 (F~ § ru,pplu,p)l l (F2F~ - F~F3), 
(57) 

ua = [-F~ (F4 - ul - ~'/u,p) + F2(F~ + ru,pp/u,p)l/(F2F~- F~F3). 

Now, we must only satisfy Eqs. (54) and' 

Ou2 Ou3 
0p = F2u,p, cgp = F3u,p (58) 

with the functions u2 and u3 taken from (57). According to computations,  

i.e., Eqs. (58) involve only one independent equation. Thus, for the functions r (p, S) and ul (p, 5') only two 
equations hold. 

Thus, it can be concluded that  nonisentropic, nonisobaric, nonstationary, spatial double wave flows 
of ideal gas that  are irreducible to invariant solutions with functional arbitrariness are available only in the 
following forms (in order of their derivation). 

(1) Double waves with one arbitrary function of two arguments with the equation of state (13). In this 
case, ui = ui (S) (i = 1, 2, 3) are arbitrary functions of entropy. The pressure is determined from the equation 
g (p) = eli  and the entropy is found from the system in involution consisting of two differential equations 
(14). 

(2) Double waves with one arbitrary function of one argument in which ui = ui (S) (i = 2, 3) are 
arbitrary functions of entropy and ul = ul (p, S) and r (p, S) are determined from the equations 

v -- u,p (F0 - Ul), 2ulpF~ § Ulpp (Fo - u,) = 0 (59) 

with the arbitrary function F0 (p). Excluding u, (p, S) from (59) we obtain that  these double waves hold only 
for the equations of state satisfying (a  2 = 1) the relation 

rrpp [ - a  (Fg) 3 + 3aTp Fg + ( r p - ( F g ) 2 ) ~ / ( F g ) 2 - 4 r p ]  

+ [ .  (Fg) - 2. p + Fg {(Fg)2 - + 2Ft } [ .  (Fg) 2 - + Fg - = 0. 

The functions p = p (Xl, t) and S = S (x2, xa, t) are found from the overdetermined system in involution (5), 
(7), and (16). 

(3) Double waves with two arbitrary functions of one argument and the equation of state r = 
g(p) A2(S) ,  in which ul : hi ( p ) A ( S ) ,  and the velocity coordinates u2 and u3 are either of the form 
u2 = h2 (p )A(S) ,  u3 = u3 (S) or u2 = u2 (S), u3 = u3 (S). In the first case the functions hi (p), h2 (p), 

h h" and g (p) satisfy the system of two ordinary differential equations [(27), (28) or (29), (30)] (hlh~ -t- 2 2 ~ 0), 
and u3 (S) is an arbitrary function. In the second case, u2 = u2 (S), u3 = u3 (S) are arbitrary functions and 
hi(p) and g (P) are related via the equation g § hlh' 1 = 0 (hlh~ ~ 0). In these double waves the pressure is 
stationary. These solutions for a polytropic gas are considered in [1-3] with the functions u2 (S) and u3 (S) 
being, however, related to A (S) through the linear dependence. For our case they are arbitrary. 

(4) Double waves with level straightlines with two arbitrary functions of one argument. The 
arbitrariness is determined by the arbitrary functions from the solution of Eq. (38). For r (p, S) and ui (p, S) 
(i = 1, 2, 3), there is an overedetermined system of five differential equations: (32), (39), and H --- 0. It 
is rather difficult to analyze this overdetermined system for the general case of equations of state. In the 
particular case of the equation of state of a polytropic gas with the polytropic exponent 7 = 2 and with the 
additional condition r § u~u m, = 0 (which corresponds to stationary flows) this system is compatible and has 
a solution with one arbitrary function of one argument. 

(5) Double waves with one arbitrary function of two arguments.  The arbitrariness is determined by 
the arbirary function from the solution of Eq. (51). The pressure in these flows is stationary. The functions 
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g (p) and hi (p) (i = 1, 2, 3) are relayed through Eq. (53), where r = g (p) A2(S) and ul = hi (p) A (S) and 
the other velocity coordinates are either ui = hi (p) A (S) (i = 2, 3) (h'2ha - h2h~ r 0) or u2 = h2 (p) A (S); 
u3 = u3 (S) are arbitrary function or u2 = u2 (S) and u3 = u3 (S) are arbitary functions. 

(6) Double waves with one arbitrary function of one argument,  which is an arbitrary function in the 
solution of Eq. (55). The functions r (p, S) and ui (p, S) (i = 1, 2, 3) are determined as follows: either 
u2 = u2 (S) and u3 = u3 (S) are arbitrary functions, ul = Fo - ar / -x /~p ,  and for r = r (p, S) we have 

2ctF~rp - ~ p + r r , , = 0  

where ct 2 = 1,.F0 is an arbitrary function, or u2 and u3 are determined by relations (57), and v = r (p, S) 
and ul = ul (p, S) are found from two equations: Eq. (54) and the equation of system (58). 

Thus, the validity has been established. 
T h e o r e m .  There are only siz types of nonisentropic nonisobaric nonstationary spatial double wave 

flows of ideal gas that are irreducible to invariant solutions with functional arbitrariness. 
This work was supported by the Russian Foundation for Fundamental  Research (Grant 93-013-17361). 
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