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NONSTATIONARY NONISENTROPIC
SPATIAL DOUBLE WAVE FLOWS

S. V. Meleshko UDC 517.944 + 519.46

Nonisentropic nonstationary spatial double waves have been studied in [1-5], where some partial
solutions of double wave equations were derived.

This paper classifies nonisentropic spatial double waves with an arbitrary equation of state 7 = 7 (p, S)
in the presence of functional arbitrariness in the general solution of Cauchy’s problem, which cannot be reduced
to invariant solutions.

Consideration is given to nonstationary, nonisobaric, nonisentropic double waves which are irreducible
to invariant solutions for the equations of motion of an ideal gas in the spatial case:

dv dr . S
— tTVp=0, —-7divV=0, — =0 (1)

The equation of state 7 = 7 (p, 5) is assumed to display the characteristics 7, # 0 and 75 # 0. In this case V =
(u1, u2, u3) is the velocity; p is the pressure; S is the entropy; 7 is the specific volume; d/dt = 8/0t +148/0z4
(summation over the recurring Greek index is performed from 1 to 3, unless otherwise stipulated).

If p and S are functionally dependent on the solution of system (1), then p = p(S), 7 = 7(S5), and
system (1) can be written in the form

av do .
'EZ'-}-VCP—-O, —0—{-{-0, divV =0, (2)

where ¢ = ¢ (5) are found from ¢’ (S) = 7(S5) p' (S) #0.
As double wave parameters we choose ¢ and some function A which is functionally independent of the
wave. From the first two equations of system (2) we obtain

(Pziauj/a/\ - (szaui/a)‘ =0 (Za 1=123, 1 74 .7) (3)

Continuing (3) D/Dt (D/Dt = Di + ueDa) and substituting the derivatives D, /Dt =
—@zq ((Oua/OX)(ON]0z;) + (Bua/0p)(0¢/0x;)), pr; = —(0uifON)(dA/dt) we have

Ou; X  Buj 0N  dX (0%u; Ou;  O%u; Ou; _ _—— C
e g T @ v B aw an) =0 (i=L23 i) )

As follows from the prohibition of reduction to invariant solutions {6], the rank of the matrix composed of
the coefficients for the derivatives dA/dt, OA/0z; (3,7 = 1,2,3,1 # j) in Eqgs. (4) and the fifth equation
of system (2) must be less than or equal to 2. Hence we arrive at the equation du;/0X = 0 (2 = 1, 2, 3)
which contradicts the nonisentropicity of the flow. Thus, flows should be considered for which p and S are
functionally independent.

We choose pressure and entropy as double wave parameters, i.e., assume that u; = u; (p, S) (: = 1,2, 3).
Introducing the new dependent variable ¢ = (div V)/7,, we reduce system (1) to the form (H = 7, + uaplap):

dp ds

5~ 7P=0 So=— =0, Ri=tasSea —Hp=0, & =ps+upp=0 (i=1,2,3). (5
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Differentiating D; completely with respect to the spatial variable z; and deriving the combinations
below, from Eqgs. (5), we obtain

Di®; — D;®; = ujpps; — wipps; + (ujpsSz; — ipsSz;) — ¢ (ujppttip — ipptjp) = 0; (6)
D(Hyp — S. . .

R = = D:‘aS ! - H%S:- — ¢ (TUaps + Uaptigpps) Sz + 97 (H? +7Hy) = 0; (7)

D (@,)/Dt = uipd(P/dt + TPz + ‘PCSz,- - §02 (uipH - Tuipp) =0 (7').7 =1, 2) 31 i ?é ]), (8)

where { = Ts + Uaplas; € = Ts + 2ugptias; D/Dt = Dt + uaDa.
Eliminating the derivatives ¢, and ¢;; from (6) and using Eqs. (8), we get

((uip - TuipS) Szj - (Cujp - TujpS) Sz; =0 (‘L, ] = 11 27 31 : # ]) (9)
Further, as in the case of stationary and plane flows, it is necessary to distinguish between two cases:
H #£0and H=0.
(1) Let H # 0. Expressing ¢ in terms of the third equation of system (5) and substituting it into
the other equations of the system, together with (9) we derive a homogeneous system of seven quasilinear

differential equations with respect to p and S. From the prohibition of double wave reduction to invariant
solutions [6] it follows that

Tuips —(uip =0 (i=1,2,3). (10)
fup=0 (:=1,2,3), then
p="h(t), e=k/r, St+ua(S)S:, =0, (11)
where u; (S) are arbitrary functions; & (t) is a function satisfying the equation
R = (k)2 dln (|ry|)/0p. (12)
Since p and S are functionally independent, the last equality gives 82 In (|7p|)/8pdS = 0 and hence,
T = A1(5) g(p) + A2(S5) (13)

[A1(S), A2(S), and g(p) are arbitrary functions]. Substituting the latter expression for 7 into (12) and
integrating it with respect to the variable ¢, we obtain g (h (t)) = 1t + ¢2 (¢1 and c; are arbitrary constants,
c1 # 0). Without loss of generality it is assumed that ¢; = 0.

Thus, for an equation of state of type (13), double waves exist in which u; (S) are arbitrary functions of
entropy; the pressure p is determined from the equation ¢g(p) = cit, and the entropy S satisfies the following
system of two differential equations in partial derivatives:

dSjdt =0, uGSz, = c141/(cit Ay + Ay). (14)

System (14) is in involution and contains one arbitrary function of two arguments. For instance, for Ay = 0
its solution is

tuy (S) — z1 + ¥ (tug (S) — z2, tuz (S) —z3) =0

[¥ (¢, ¢) is an arbitrary function].
We now consider the case where uapuqp # 0 (for definiteness it is assumned that ui, # 0). From (10),
the existence of the functions F; = F;(p) ( =0, 2, 3) follows. Hence,

T = Fou%p — UgUap, Uip = Fiulp (1=2,3). (15)
Excluding the derivatives dy/dt from Eqs. (8) and using Eq. (7) we get
Vi=THp:, +o(H(Sz, + UipbUapSea ) —p2e =0, c,'=2u,'pH2+'eru,~p —7Huip, (1=1,2,3). (16)
From the combination

T @€ uap DaR1 — uas (DY /Dt — TDaR2) + ¢ (E tiaptias + (H) ugp,DgSo =0
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-we find the first-order equation for the dependent variables:
Ry = H (uapSz,) [T€ (upssSzy) + ¢ (2HEuapuias — 2T Uapptias — HTEs)] + b = 0. (17)

The form of the function b = b(p, S) is rather tedious and will not be used in further discussions.

With uapSz, = 0 a double wave exists only for u; = u;(S) (¢ = 2, 3). Indeed, differentiating the
last equation along the particle trajectory and allowing for conservation of entropy in the particle, we obtain
D (4apSzq)/Dt = TuappSz, = 0. Thus, the prohibition of reduction to the invariant solution makes it
necessary to fulfill the following:

<1l
Ulpp U2pp U3pp

rang

In this case, Fj = Fj = 0 and, rotating the axis of coordinates, one get u; = u;(S) (¢ = 2, 3). In this case,
the equation uapSz, = 0 gives Sz, = 0 and from the relation D;R; = 0 we obtain ¢, = Hpuipp?/H.
Substituting the latter into (16) (: = 1), we get 2u1, H — Tujpp = 0. Hence, from 7 = u1, (Fo — u1) and (15),
it follows that

2u1pFé + u1pp (Fo —u1) =0.

In this case the system of equations (5), (7), and (16) along with %4pSz, = 0 are in involution and contain
one arbitrary function of one argument.

We consider the case where uapSz, # 0. Assume that { # 0. Let us demonstrate that in this case
the system of equations (5) has no solutions with functional arbitrariness in the general solution of Cauchy’s

problem.
If

Ulp ‘U.2p ‘U3p

=1,
u1s Uuz2s u3s

T = rang

either reduction to the invariant solution or contradiction with the condition H # 0 occurs. Thus, it is assumed
that r = 2.

We introduce now the new dependent variable A = uqpSz, [in terms of compatibility theory, the space
of dependent variables is partially extended, i.e., we consider the extended space not in its entirety but only
its subspace].

Since ¢ # 0, it follows from the equations

R3yi=~1DiRy + DV /Dt — ¢ uiptiqp Do So — ¢(HD; S0 =0
that
Li = Xz; —aia (p, §)Sea —c(p, S, A, ) =0 (:=1,2,3)
with the functions a;; = aij (p, S), c=c(p, S, A,¢) (3, 5 =1, 2, 3). In addition,
D d)

Lo = Di (A — tapSzs) = a TPUappSze + TppA = 0.

For the dependent variables p, S, ¢, and X the overdetermined system of differential equations is deduced in
which the parametric derivative is either S, or Sz,.
We determine the coefficients of the second derivatives in the following extensions of the equations

(t=1,2,3):
DiRy = u45Sz4z; + ... =0, DiR3 =171 /\Hfuasssza:‘ +...=0,

DL;
i " DiLy + aiaDaSo = T@UappSzaz; +-.- =0, Di(A — uapSzs) = UapSraz; +... = 0.

In this case only terms containing the second derivatives are written.
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Since H Ap& # 0, and the parameteric derivatives can be represented as Si,z; (3,7 =1, 2, 3) only,
the solution having functional arbitrariness requires that in this system the matrix rank be notequal to the
number of these derivatives. Hence,

Ulp U U3p
ms  us WS || o
U1ss U2SS U3SS

Ulpp U2pp U3pp

ro = rang

If
Ulp U2p u:;p
uls u2s ugs f| =0,
Ulpp U2pp Ulpp
after integration over S, it acquires the form
(FF3 — F3Fy) w1 + Fup — Fuz = g (p) (18)
with the arbitrary function g (p). Differentiating the last equation with respect to p we get
(Fy Fs ~ Fy Fa)uy + Fyuz — Fylus = ¢ (p). (19)

From (18) and (19), we obtain the relations
(FyF3 ~ F3Fy ) (us— Fyw1) = Fyg'(p) = Fylg(p), (FyF5 = F3Fy)(ua — Fau1)=Fyg'(p) — F79(p)-  (20)

When F,Fj' — F{F) # 0, from Eq. (20) we find u; = u; (p) (¢ = 1, 2, 3), which in view of the equation
Ry = 0 contradicts the condition Hey # 0. Hence, F3 F§ — F3Fj = 0. Without loss of generality, it is assumed
that F3 = 0. In this case either F}} = 0 or uzs = 0. In both cases, considering the relation ry = 0 leads to
reduction (plane flows).

Thus, we further study the case with £ = 0. From (10) and ¢ = 0, it follows that 7 = fou}, with
fo = fo(p). From the combinations

Dz ¥ — Dz ¥i=0 (i=1,2,3, 1 #j),
we deduce the first-order equations
Sz;05 — Szjai =~ (uipdj —ujpdi) (4,7 =123, i #j),
a1 = 7Huyp [(Hp/H)s — 2 (vipp/u1p)s + 2 (H/7)s], (21)
a; = Fiay, di = Fidy + F{ (vip 2H* + 7H,) — 21 Huypp) — THup F' (i =2, 3).

As follows from (21) and R; = 0, the relations a; (ugsaa) =0 (i = 1, 2, 3) must be satisfied for the
solution to have functional arbitrariness. Since 75 # 0, it follows that a; = 0 and from (21) it follows that

d;i = Fidy (1 =2, 3). Hence,
(Hp/H)s — 2(wipp/u1p)s + 2(H/[7)s = 0; (22)
F! (u1p (2H® + 7Hp) — 27 Huypp) — THu, F =0 (i =2, 3). (23)
From the equations
DV;/Dt —tD;Ry + oH tapuasDiSo =0 (i=1,2,3)
on the strength of (22), the following relation follows:
27 Huyppp — 27u1pp (2H? + 7Hp) + uipH (4H? — 7Hp + 7755) = 0. (24)
Equations (22)-(24) and
£ =754+ 2ugpuas =0 (25)
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-are sufficient for the involutivity of the overdetermined system of equations (5), (7), and (16) with two arbitrary
functions of one argument. The study of the compatibility of the system of equations (22)-(25) involves two
stages: F; = Fj =0 and (F3)% + (F})? # 0.

(A) Let (F})% + (F})* # 0. Since THuy, # 0, from (23) it follows that (F3Fy — F3Fy') = 0. Without
loss of generality, F3 # 0, F3 = 0, and u3 = u3 (S) are assumed to be arbitrary functions. Hence, Eq. (22) is
identically fulfilled in view of (23) (: = 2).

From Egs. (15) and (25), and 7 = fou}, we obtain the first derivatives

uzs = —(fo uips + u15)/F2, uzp = Fruip. (26)
Equating the mixed derivatives and integrating over S we determine
uipp = ~(up (Faefy = foFy + F2 (1 + F})) — w1 Fy + Fi)/(fo F2),

where Fy = Fy(p) is an arbitrary function. Since the calculations are too cumbersome, we just indicate the
way to further study this problem. Differentiating u1p, with respect to p, we find ujppy. Substituting the
derivatives ujp, and ujpp, into (23) and (24), we get Fy = cF; (c = const), and for u; = u; (p, ), we derive
the equation

aup + (g —¢c) =0

with the function a = a(p). Without loss of generality, it is assumed that ¢ = 0. From the last equation
we find u; = hy (p) A(S). Then, from (26) we obtain uz = hy (p) A(S) and from the condition 7 = fou}, it
follows that the equation of state can be represented in the form 7 = g (p) A%(S). In this case, 4 = A(S) is an
arbitrary function and for the function ¢ = g (p) and kh; = ki (p) (¢ = 1, 2) two ordinary differential equations
hold:

FaFy () (1+ Ff) + ') = 2(F3)*h) (¢'h1 — hg)

+FFy 94" +2((Fy)*g + ()’ Fy (1 + Ff)) (B (1 + F) + ¢'); @7
Fyghi = P (1+ F}) ()’ — Fyha (By)* + By (Fag' ~ g Fy) (28)
(F2 = hy/h}). Here, as T + ugUap = 0, the pressure is also independent of time ¢. The function uz = u3 (S5)

remains arbitrary.

Remark 1. In [1-3], for a polytropic gas with the function us3 = cA(S) (¢ = const), another
representation of the solution deduced here is given. Thus, if the solution is sought for in the form
u? = (p) A2(S), for the functions Fz (p) and ¥ (p) there is a system of two ordinary differential equations

g (299" — (@)2)/2p¢") = ¢’ + (1 + FF) (') /(49) — (g + ¥'[2) Fy/ Fy; (29)
g (g’ + (1 + F3) (#'?/(4)) = (1 + F3)*(¢')?/(84%)
+(d L+ FD) + gRF) ¥ [(29) +4' g F3/Fa+ g(g" + 24 F3/F2). (30)

Remark 2. In stationary spatial double waves, the equation 7+ uquqp = 0 provides identical fulfillment
of Eq. (24) by virtue of (23) with (F3)? + (F3) # 0.

(B) Let Fj = Fj = 0. Without loss of generality, it is assumed that F; = F3 = 0, which corresponds
to ug = uz (S), uz = uz (S). Then, from the condition ¢ = 0, we obtain u; = hy (p) A(S) + ¥ (p), and from
T = fou%p it follows that fo = —hy/h). Analyzing Egs. (22) and (24) (without loss of generality) we arrive at

ur=hi1(p)A(S), T=g(p)A4%S), (31)

where g = —h1h}. In this case, the functions u3 (S) and u3 (S) remain arbitrary.
In [1-3] these functions are related to A(S) due to the additional requirement upon the double wave

shape.
(2) Let H = 0. Since p and S are functionally independent, from the prohibition of reduction to the
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invariant solutions of systems (5), (7), and (9) it follows that

Ui1s Uus uss
ap a2 a3
rangfl b2 b 0 | <2,
‘b3 0 b
b3 0 -k

where b; = Tuips — (uip; a; = bj — €uip (i = 1, 2, 3). Therefore, with byby # 0 the following relations must be
satisfied:

baaa = 0, uasba = 0~ (32)

We further pass to the new independent variables p, S, z3, and ¢ (without loss of generality the
relationship pz, Sz, — pz, Sz, # 0 is assumed to be fulfilled), i.e.,, z1 = P (p, S, z3, t), z2 = Q (p, S, =3, t).
Thus, Egs. (1) can be written as

BP, — AQp =0, —u;pBPs+ (r+upA)Qs =0, (v+ uzpB) Ps —u3,AQs =0,
(uspB — TQ::;) Ps — (ugpA — Tst) @s =0,

(u2s — u3sQz,) Pp — (u15 — u3sPr3) @p =0, (32)
A=wuy —u3Pry — P, B=1uz—u3Qs, — Qs
Hence,
P,Qs — PsQp # 0. (34)

The study of system (33) consists of two cases:

(a) there are values of ¢ and j (i # j) such that ujpsujp — ujpsuip # 0,

(b) UipSUjp — UjpSUip = 0 (2) 1=1,23,1 # .7)

We now consider case (a). For definiteness it is assumed that A3 = ugpsu1p—upsugp # 0. We introduce
the notations

Ay = uzpsuzp — UzpsU3p, N2 = UpSU3p — UZpSUILp-

Then system (33) reduces to the system

P—_—(A (¥ v X uzp )A; 35

7381+ Y5 u2ps + XS U2pS /A3 (35)
Y u X w )

= Ay —1t LA et P As; 36

9 (xs 2 " s uips XS U1ps [Rs (36)

(v —u3Qqes — Q1) Pp — (u1 —u3Pry — P)Qp =0 (37)

[¢ =T 4+ UgUap, X.= X (P, S)]

Substituting (35) and (36) into (37) we get a relationship which is linear in z3 and t. Splitting it
with respect to z3 and ¢, we obtain the following equations: for a free term, a linear second-order hyperbolic
equation in function x = x (p, S) of the type

TXps — CXp + 1xs + 2x =0 (38)

where the functions ¢ = ¢1 (p, S) and q2 = ¢q2 (p, S) are expressed in terms of 7 and u; (p, S) (: = 1, 2, 3),
and for z3 and ¢,

Agbap =0, (uapba) Ag + b1boy — babyp = 0. (39)

Thus, at H = 0 the flows in the case (a) will have linear levels and the functions 7 (p, S) and u; (p, S)
(i =1, 2, 3) satisfy the overdetermined system consisting of five differential equations: (32), (39), and H = 0.
It is rather difficult to analyze this system in the general case. However, assuming ¢ = 0, the flows become
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-stationary. For stationary gaseous flows with the equation of state of the form 7 = g (p) A%(S), this system is
consistent only in a partricular case of the equation of state for a polytropic gas with polytropic index v =2
and contains one arbitrary function of one argument.

For case (b) without loss of generality it is assumed that uj, # 0. Hence,

uip = Fugp  (1=2,3), (40)

where F; = Fi(p) (: = 2, 3). In this case, the solution of system (33) by virtue of (34) reduces to the
integration of a system of two linear equations with respect to one unknown function @ (p, S, z3, t):

wQp + B (u3Qzy + Qt —uz) =0; wsQp+ B (uzsQzy — u2s) = 0. (41)
In this case,
P=—-FQ —z3F3 + tFy + Fo, (42)
w=u+uFtuFs—Fy, B=Fy—F,Q—23F; +tF;, 7= —wup,;
Fy = Fy(p), Fy = Fy(p) are arbitrary functions. Note that Eq. (42) gives
z1 + 22 F2 + 23 F3 + tFy = Fy,

and substituting (42) into the reversibility condition (34) we obtain Qs # 0. In addition, since 7 = —wuyy,
we have w # 0 and £ = ~w?(u;p/w)s. Excluding @, from (41) by virtue of 8 5 0, we arrive at

(u3/w)sQzz + (1/w)sQt = (uz/w)s. (43)

We demonstrate now that wg # 0. Indeed, let wg = 0; then uzs # 0, and with uzs = 0 from (43) we
find uss = 0, and hence u;5 = 0, which contradicts the condition 75 # 0. Since ugs # 0, relationship (43) is
integrated over z3:

Q = z3 (v2s/uzs) + G (¢, p, ).
Substituting this relation into the first equation of (41) and splitting it with respect to =3, we get
w (uzs/uss)p — (F3 (uas/uss) + Fs) (us (vas/uss) + G — uz) = 0; (44)
wGp + (Fy — F3G + tFy) (u3 (ups/uss) + Gt — ug) = 0. (45)
If Fjuss+ Fiuzs = 0, from Eq. (44) we find that (uzs/u3ss)p = 0, which also leads to the contradictory
equality 7s = 0.
Differentiating the relation 7 + wujp = 0 with respect to p using the condition H = 0, we deduce
Fyup + Fyuz — F| = ~w (vi1pp/u1p)- (46)
Since wg = 0, we have,
Fougs + Fyuzs = —w (uipp/uip)s.

On the other hand, ws = u1s + u25F2 + uss F3 = 0. Differentiating the latter with respect to p and using (40),
we have Fjugs + Fiuss = —ups (1 + F} + F}). However, in this case (Tuip/uips)p = 0. Since 7 = —wuip, it
follows that

upp = /(g + 1), (47)

where ¢ = g(S); A = A(p). In this case, 7 = —w/(wg + A) and hence g'A # 0, and if g'A = 0, then 757, = 0.
Substituting 7 and v}, into H = 0 we obtain 1+ F2+F? = A (w/)\),. Thus, (w/A), # 0. As (F3)%+(F3)? # 0,
let, e.g., F} # 0. From (46) it follows that

uz = (—Fyuz + Fy —w (u1pp/u1p))/ F3. (48)
Differentiating (48) with respect to p and using (40), we get
uz (F3f F3) = —u1p (F2Fy + FsF3) [ Fy + [Fy — w (wapp/u1p)/ Falp. (49)
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When (F;/F3)' =0, it is assumed that F, = 0. Substituting (47) into (48) we obtain a quadratic polynomial
with respect to g (S). As ¢’ # 0, the coefficients for g must go to zero. Hence, (w/)), = 0 and this contradicts
the above assumption. Thus (F}/F3)' # 0; then from (49) we determine uz and calculations similar to those
for (F3/F3)' = 0 lead to the same contradiction. Hence, ws # 0.

Integrating (44) over (46) we have the relation

Q_ (U2/ ) +G'(p,5' /\) (A=$3—t(u2/w)s),

(t/w)s (1/w)s
Substituting it into (45) and decomposing it with respect to ¢, we get
ko — k3G =0; (50)
Gp — G\ (Fy — FyG — F\) uzsfws = (Fy — F3G — F3)) uzs/ws, (51)

where k; = Fiwg (ng/T)S + uis (In (T/u%p))s (z=2,3).
We assume that k3 = 0, then k3 = 0. Hence,

Fowg (u%’p/'r)g + ugs (In ('r/u%p))s =0, Fywg (u%p/‘r)g + uzs (In (T/u%p))s =0. (52)

Further, it is necessary to consider two cases:
1. Let Fouzs — Fiugs # 0. Then from (52) we find that (u%p/‘r)s =0, ie., 7 = ¢(p) u%p and from
H =0 it follows that

T=g(p) A(S), wi=A(S)(hilp)+ai(S)) (i=1,2,3)

Further analysis leads (without loss of generality) to the functions g (p) and &; (p) (¢ = 1, 2, 3) satisfying the
equations

g +hohy =0, g+hohy =0, (53)
and the velocity coordinates are represented either as
ui=A(S)hi(p) (1=1,2,3)
or as
ui=A(S)hi(p) (1=1,2), wuz=u3z(9),

where u3 (S) is an arbitrary function; hyhs — hjhe # 0.
2. Let Fyuzs — Faugg = 0. In this case, a double wave exists only if Eq. (53) holds and

u =AW (), ui=u(S) (i=23)

where u3(S) and u2(S) are arbitrary functions.
Assume now that k3 # 0. Integrating (50), we have G = A(k2/k3) + ®(p, S). Substituting the latter
into (51) and decomposing it with respect to A we obtain
kskap — k2ksp + (k2 F + ks F3) (Fruzs — Fiugs) (u1p/7)s = 0; (54)

k
o, + (Fy — F3) (’:}i; - % 752’) =0. (55)

Differentiating the relation 7 + wuj, = 0 with respect to p and using the condition H = 0, we get
usFo +ugFy = Fy —uy — T/ulp, uze' + u:;Fé = F,i + Tulpp/u%p. (56)

In this case, for Fo F3 — F3F3 = 0, without loss of generality, it is assumed that F; = F3 = 0, i.e., uz (S)
and u3 (S) are arbitrary functions, and u; (p, S) and 7(p, S) is determined from the equations

T = (F4 — ul)ulp, ulpp(F,; - ul) + Fiulp = 0.

197



With F, Fy — F}F3 # 0, Egs. (56) gives
up = [F3(Fy — uy — 7/usp) — F3 (Fy + Tuagp/usp)/(F2F3 — F3F3),

(57)
ug = [~ Fy (Fs — ui — 7/u1p) + Fa (Fy + Turgp/u1p)}/ (F2F3 — F3F3).

Now, we must only satisfy Eqs. (54) and"

Juq Ous

) = Fuyp, Bp = Fiuyp (58)
with the functions u; and uj taken from (57). According to computations,

Ous Ous
F (E - qulp) + F3 (—5; - F3u1p) =0,

i.e., Egs. (58) involve only one independent equation. Thus, for the functions 7 (p, S) and u1 (p, S) only two
equations hold.

Thus, it can be concluded that nonisentropic, nonisobaric, nonstationary, spatial double wave flows
of ideal gas that are irreducible to invariant solutions with functional arbitrariness are available only in the
following forms (in order of their derivation).

(1) Double waves with one arbitrary function of two arguments with the equation of state (13). In this
case, u; = u; (S) (¢ = 1, 2, 3) are arbitrary functions of entropy. The pressure is determined from the equation
g(p) = a1t and the entropy is found from the system in involution consisting of two differential equations
(14).

(2) Double waves with one arbitrary function of one argument in which u; = u;(S) (¢ = 2, 3) are
arbitrary functions of entropy and u; = uj (p, S) and 7 (p, S) are determined from the equations

T = Ujp (Fo — ul), 2u1pFé + Ulpp (Fo —_ u1) =0 (59)

with the arbitrary function Fj (p). Excluding u; (p, S) from (59) we obtain that these double waves hold only
for the equations of state satisfying (a? = 1) the relation

TTop [~ (F3)S + 3y By + (15 — (F)2) \/(F})? — 415)
+ 11 Fy [ (F§) — 2am, + FyJ(F{)? — 4mp) + 2F67': (e (F(;)2 —dar, + F, V(F§)?2 —4r] = 0.

The functions p = p(z1, t) and S = S (z3, z3, t) are found from the overdetermined system in involution (5),
(7), and (16).

(3) Double waves with two arbitrary functions of one argument and the equation of state 7 =
g(p) AX(S), in which u; = h; (p) A(S), and the velocity coordinates uz and uj are either of the form
ug = hy(p) A(S), uz = u3(S) or ug = u2(S), uz = u3(S). In the first case the functions &y (p), ha (p),
and g (p) satisfy the system of two ordinary differential equations [(27), (28) or (29), (30)] (h1AY + hohf # 0),
and u3 (S) is an arbitrary function. In the second case, uy = uy (S), us = u3 (S) are arbitrary functions and
h1(p) and g(p) are related via the equation g 4 h1h} = 0 (h3h{ # 0). In these double waves the pressure is
stationary. These solutions for a polytropic gas are considered in [1-3] with the functions u2 (S) and us3 (S)
being, however, related to A (.S) through the linear dependence. For our case they are arbitrary.

(4) Double waves with level straightlines with two arbitrary functions of one argument. The
arbitrariness is determined by the arbitrary functions from the solution of Eq. (38). For 7 (p, S) and u; (p, 5)
(z = 1, 2, 3), there is an overedetermined system of five differential equations: (32), (39), and H = 0. It
is rather difficult to analyze this overdetermined system for the general case of equations of state. In the
particular case of the equation of state of a polytropic gas with the polytropic exponent v = 2 and with the
additional condition T+ uauap = 0 (which corresponds to stationary flows) this system is compatible and has
a solution with one arbitrary function of one argument.

(5) Double waves with one arbitrary function of two arguments. The arbitrariness is determined by
the arbirary function from the solution of Eq. (51). The pressure in these flows is stationary. The functions
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g(p) and hi(p) (i =1, 2, 3) are related through Eq. (53), where 7 = g(p) A%(S) and u; = k) (p) A(S) and
the other velocity coordinates are either u; = hi (p) A(S) (: =2, 3) (hyhs — hahly # 0) or ug = ha (p) A(S);
u3 = u3 () are arbitrary function or u; = u2(S) and u3 = u3 (S) are arbitary functions.

(6) Double waves with one arbitrary function of one argument, which is an arbitrary function in the
solution of Eq. (55). The functions 7 (p, S) and u;(p, S) (: = 1, 2, 3) are determined as follows: either
uz = uz (S) and u3 = u3 (S) are arbitrary functions, u; = Fy — ar/,/=7p, and for 7 = 7 (p, S) we have

2a F{Ty\[/—Tp+TTpp =0

where o = 1, Fy is an arbitrary function, or u; and ug are determined by relations (57), and 7 = 7 (p, S)
and u; = u; (p, S) are found from two equations: Eq. (54) and the equation of system (58).

Thus, the validity has been established.

Theorem. There are only siz types of nonisentropic nonisobaric nonstationary spatial double wave
flows of ideal gas that are irreducible to invariant solutions with functional arbitrariness.
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